Medical big data is the talk of the medical industry. In fact, medically advanced countries like the U.S and the U.K have already deployed healthcare systems tailored to each individual patient, using medical big data. The Korean government has also established a ‘Healthcare Big Data Initiative’ consisting of major public institutions and experts from various fields in efforts to leverage medical big data as the key resource in what we call the Fourth Industrial Revolution. The initiative seeks to make use of the existing medical big data, by suggesting ways to improve legal and institutional measures on the utilization of big data in the medical field and by devising service models that meet the needs of both public and private sectors.
With that in mind, we will discuss the concept of medical big data in the following series of articles to help us understand and explore how we can leverage the big data at hand. In this article, we start by asking the three most essential questions regarding big data.
1. What is medical big data?
The concept of big data first appeared in 2001 when an IT consulting firm META Group (now Gartner) defined big data as the 3Vs.
Big data is characterized by large data volume, high velocity in generation, delivery and analysis of data, and variety of data forms such as numbers, texts, and images. The same applies for medical big data. The only difference is that it deals with health-related data generated in medical environments and it also refers to the technology of deriving value from the collection, storage, and analysis of the data itself.
2. Medical big data, how big and how fast-growing is it?
The size of medical data has grown dramatically with the spread of medical imaging and information systems such EMR (Electronic Medical Record), PACS (Picture Archiving and Communication System), and mobile/wearable health devices.
According to IDC, an American IT research firm, the total size of existing medical data worldwide will increase from 153 Exabytes in 2013 up to 2,314 Exabytes by 2020. Here, 1 Exabyte is equivalent to 8 million 128-Gigabyte iPads. What’s more, with the advent of Internet of Things (IoT) which accelerates real-time collection of personal health information, the size of the medical big data is growing even faster and faster.
3. Medical big data, how diverse is it?
Data can be divided into 3 categories—structured, semi-structured, and unstructured—depending on how structured the data values are.
Structured data refers to any data with fixed values such as gender type (male/female) or age (numbers).
Semi-structured data refers to data with at least some kind of fixed patterns, though not completely fixed in its values. A typical example of semi-structured data is an ‘annotation’, the physician comment added to a medical image or document and which usually consists of a set of shapes or measurement units. Being either hand-written or digitally added, annotation data isn’t always fixed in its values but still certain patterns exist.
Unstructured data, on the other hand, refers to data completely without rules. For example, medical images fall under the category of unstructured data, and they don’t have any fixed or repeated patterns such as numbers, variables, and terms.
If the above-mentioned structured data is like a multiple-choice question, the unstructured data is closer to an essay question. There is only one correct answer for a multiple-choice question, but no fixed answer exists for an essay question which makes it much harder to grade as well. In other words, unstructured data requires a higher level of analytical techniques compared to structured or semi-structured data.
__
It’s interesting to note that in April 2017, the Korean National Information Society Agency (NIA) declared, “the healthcare industry is one of the key potential areas for big data applications” (Big Data Monthly Vol.29, National Information Society Agency).
In the next article, we will continue the discussion on medical big data by highlighting why it’s important to first integrate the big data and the benefits that come with the integration.
영상의학과의 데이터 활용, INFINITT Enterprise Search로 쉽고 빨라집니다
#INFINITT_Enterprise_Search #영상의학과 #데이터활용
INFINITT DoseM으로 시작하는 체계적인 방사선량 관리
#INFINITT_DoseM #방사선량_관리 #dose_management
의료 데이터를 바라보는 새로운 관점, INFINITT와 시작하는 데이터 자산화
#데이터_자산화 #enterprise_imaging #INFINITT_Healthcare_Platform
INFINITT PACS 7.0이 영상의학의의 새로운 역할을 지원하는 세 가지 방법
#INFINITT_PACS #인공지능 #협업 #판독_효율성_향상
INFINITT MDT와 함께하는 효율적인 다학제 진료
#다학제진료 #INFINITT_MDT
Mediclinic Middle East(MCME), INFINITT Enterprise Imaging Platform으로 모든 환자 데이터 통합
#enterprise_imaging #아랍에미리트 #그룹병원 #환자데이터통합 #nonDICOM지원
국내 디지털 병리 선두주자, 삼성서울병원
#디지털병리 #슬라이드관리 #업무효율화 #판독정확성 #다학제 #인공지능연구
Enterprise Imaging, 의료 영상 및 데이터 통합 전략
#enterprise_imaging #의료영상데이터통합 #데이터공유 #다학제진료 #빅데이터 #AI
INFINITT Digital Pathology Solution으로 구현하는 디지털 병리 워크플로우
#디지털병리 #INFINITT_Digital_Pathology_Solution
PACS, 영상의학과를 넘어 원내 영상 공유 솔루션으로! 일본 쿠루메대학병원의 특별한 PACS 활용 사례를 살펴봅니다.
#일본쿠루메대학병원 #PACS #원내영상공유
본원과 분원에서 촬영된 환자 영상을 하나의 뷰어에서 검색하고 조회할 수 있다면 얼마나 편리할까요? 대만 CMUH의 의료영상 네트워크 통합 사례를 살펴봅니다.
#대만_CMUH #그룹병원_영상통합 #Consolidated_Worklist #Distributed_Server
미국 시애틀아동병원이 인피니트의 영상 통합 플랫폼, INFINITT Healthcare Platform을 선택한 이유와 운영 계획에 대해 자세히 들어봅니다.
#미국_시애틀아동병원 #VNA #의료영상통합플랫폼 #진료과간_영상공유
더욱 안전한 방사선 검사를 위한 서울대학교병원의 비결, INFINITT DoseM을 통한 체계적인 방사선량 관리!
#서울대학교병원 #선량관리솔루션 #권고선량관리 #INFINITT_DoseM
분당서울대병원 교수님은 출근 지하철에서 태블릿 PC로 환자 영상을 보며 진료를 준비한다고 하는데요. 어떻게 가능한 일인지 알아볼까요?
#분당서울대학교병원 #MobilePACS # 언제어디서든_영상조회
3D 가상 내시경으로 장기를 구석구석 살펴볼 수 있는 3D 진단 지원 솔루션, Xelis
#서울특별시보라매병원 #Xelis_Colon #3D진단지원솔루션 #신속한_3D영상형상화
우리 병원만을 위한 맞춤형 리포트 & 원활한 장비 연동, 인피니트 심장과 PACS로 한번에!
#세브란스병원_심장혈관센터 #심장과PACS #맞춤형리포트
프리미엄 동물병원이라면 반드시 갖추어야 할 Vet PACS! 반려동물을 더욱 빠르고 정확하게 진단합니다.
#이리온동물병원 #Vet_PACS #3D기능 #대기시간단축